Coordinated hydrolysis explains the mechanical behavior of kinesin.

نویسندگان

  • C S Peskin
  • G Oster
چکیده

The two-headed motor protein kinesin hydrolyzes nucleotide to move unidirectionally along its microtubule track at speeds up to 1000 nm/s (Saxton et al., 1988) and develops forces in excess of 5 pN (Hunt et al., 1994; Svoboda et al., 1994a). Individual kinesin molecules have been studied recently in vitro, and their behavior has been characterized in terms of force-velocity curves and variance measurements (Svoboda and Block, 1994a; Svoboda et al., 1994b). We present a model for force generation in kinesin in which the ATP hydrolysis reactions are coordinated with the relative positions of the two heads. The model explains the experimental data and permits us to study the relative roles of Brownian motion and elastic deformation in the motor mechanism of kinesin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The load dependence of kinesin's mechanical cycle.

Kinesin is a dimeric motor protein that transports organelles in a stepwise manner toward the plus-end of microtubules by converting the energy of ATP hydrolysis into mechanical work. External forces can influence the behavior of kinesin, and force-velocity curves have shown that the motor will slow down and eventually stall under opposing loads of approximately 5 pN. Using an in vitro motility...

متن کامل

Porters versus rowers: a unified stochastic model of motor proteins

We present a general phenomenological theory for chemical to mechanical energy transduction by motor enzymes which is based on the classical "tight-coupling" mechanism. The associated minimal stochastic model takes explicitly into account both ATP hydrolysis and thermal noise effects. It provides expressions for the hydrolysis rate and the sliding velocity, as functions of the ATP concentration...

متن کامل

Collective Dynamics of Kinesin-1

Motor proteins are the engines of biology, converting chemical energy to mechanical work in cells. Kinesin-1 is a motor protein that transports vesicles towards the plus end of microtubules, widely believed to be responsible for anterograde transport of synaptic vesicles in neurons. Advances in single-molecule techniques have allowed the characterization of single kinesin motors in vitro at a r...

متن کامل

Intramolecular Strain Coordinates Kinesin Stepping Behavior along Microtubules

Kinesin advances 8 nm along a microtubule per ATP hydrolyzed, but the mechanism responsible for coordinating the enzymatic cycles of kinesin's two identical motor domains remains unresolved. Here, we have tested whether such coordination is mediated by intramolecular tension generated by the "neck linkers," mechanical elements that span between the motor domains. When tension is reduced by exte...

متن کامل

A mathematical model describing the mechanical kinetics of kinesin stepping

MOTIVATION Kinesin is a smart motor protein that steps processively forward and backward along microtubules (MTs). The mechanical kinetics of kinesin affecting its stepping behavior is not fully understood. Here, we propose a mathematical model to study the mechanical kinetics of forward and backward stepping of kinesin motor based on the four-state discrete stochastic model of the motor. RES...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 68 4 Suppl  شماره 

صفحات  -

تاریخ انتشار 1995